

Disorder	Familial Relative Risk	Heritability
Autism	25-50	60-90%
Schizophrenia	10	85%
Bipolar Disorder	7-10	85%
ADHD	2-6	77%
Alcohol/Drug Addiction	3-8	55%
Eating Disorders	10	55%
OCD	4-10	30-50%
Anxiety Disorders	5	40%
Depression	3	40%

Common Findings in Neuroimaging of
Psychopathology

Disorder	Structural	Functional
Autism Spectrum	tearly TBV corpus callosum volume	Atypical connectivity of multiple networks
ADHD	 Delayed cortical surface area development Frontal cortical thinning Widespread \WM integrity 	 Disturbed function in attention and inhibitory networks Reduced reward sensitivity Atypical DMN and PFC/Nac connectivity
Schizophrenia	Ventricular enlargement Accelerated cortical GM loss Widespread ↓WM integrity	DDNN connectivity; Ufronto-parietal connectivity; altered DLPFC activation (working memory tasks)
Bipolar Disorder	Widespread ↓WM integrity ↑deep WM hyperintensities	Altered cortico-limbic connectivity
Depression	 hippocampal volume 	 Aamygdala & dACC reactivity to negative stimuli VrACC activation to emotional stimuli Vventral striatal activation to positive stimuli
Anxiety Disorders	 Altered amygdala volume Reduced amygdala-PFC WM integrity 	 Aamygdala, insula, and dACC reactivity to threat;
PTSD	 tamygdala volume thippocampal volume 	 Aamygdala reactivity to threat; Altered ACC activation to trauma stimuli

STRUCTURAL	
Phenotype	Heritability
Mean cortical thickness	65%-82%
Anterior cortical thickness	80%-100%
Corpus callosum white matter density	80%
Total cortical unmyelinated white matter volume	85%
Intracranial volume	71%-91%
Amygdala volume	49-83%
Lateral ventricle volume	31%-92%
Caudate volume	90%
Accumbens	49%
Corpus callosum volume	85%-92%
Hippocampal volume	77-79%
Thalamus volume	74-88%
White matter integrity (various regions)	40-80%
FUNCTIONAL	
Working memory task-related brain activation	~40%-65%
Resting state functional local connectivity	46-89%
Resting state functional global connectivity	37-62%

Two General Approaches

- Discovery: Identify loci that influence neuroimaging endophenotypes
- Characterization: Characterize neural expression of established genetic risk factors

Two General Approaches

- Discovery: Identify loci that influence neuroimaging endophenotypes
- Characterization: Characterize neural expression of established genetic risk factors

The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis

SE Murphy¹, R Norbury², BR Godlewska¹, PJ Cowen¹, ZM Mannie¹, CJ Harmer¹ and MR Munafò³ Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.[®]University of Oxford Centre for Clinica Magnetic Resonance Research (OCMR), John Radcille Hospital, Oxford, UK and [®]School of Experimental Psychology, University of Bristol, Bristol, UK

	k	g	95%	5 CI	P-value	I² (%)	$\mathbf{P}_{\mathrm{diff}}$
All studies	34	0.21	0.00	0.43	0.050	70	NA
Published							
Yes	29	0.35	0.15	0.55	0.001	60	0.008
No	5	-0.66	-1.38	0.06	0.073	80	

Modest but significant effect
Larger when only published studies considered

· Significant heterogeneity of effects across studies

- Variance explained ~1% compared to ~30% in original studies
- No study was adequately powered to detect this effect

Another Challenge: What's the Phenotype?

- Prior imaging/disease studies provide leads
- But endophenotype concept implies these relationships must be genetically mediated
- But, the search space could be huge
- How to select high-yield brain phenotypes?
- · Need screening methods

High Dimensional Endophenotype Ranking in the Search for Major Depression Risk Genes

David C. Glahn, Joanne E. Curran, Anderson M. Winkler, Melanie A. Carless, Jack W. Kent Jr., Jac C. Charlesworth, Matthew P. Johnson, Harald H.H. Göring, Shelley A. Cole, Thomas D. Dyer, Eric K. Moses, Rene L. Olvera, Peter Kochunov, Ravi Duggirala, Peter T. Fox, Laura Almasy, and John Blangero

BIOL PSYCHIATRY 2011

Endophenotype ranking value: $\text{ERV}_{ie} = |\sqrt{h_i^2}\sqrt{h_e^2}\rho_g|$

Generate genetic covariance between disorder and endophenotype using:

- Square root of disorder heritability
- Square root of endophenotype heritability
 Genetic correlation between them

Derived from pedigree or twin data

Genomic Complex Trait Analysis (GCTA)

- Estimate heritability due to common variants directly from genotypes ("SNP-chip heritability")
- Measure genetic similarity of unrelated individuals and its linear relationship to phenotype similarity
- Genetic relationship matrix (GRM)
- Estimate heritability using residual maximum likelihood analysis from a linear mixed model
- Larger sample sizes reduce standard error
- · Rank putative endophenotypes

Massively Expedited Genomewide Heritability Analysis (MEGHA)

- Problem: massive number of potential phenotypes
- · GCTA unfeasible for screening
- MEGHA (Ge et al.) uses same GRM but computes efficient variance component score test (kernel machine methods)
- · Can compute permuted p values

Poster Talk (Group 1): Ge et al. Fast Heritability Analysis Using Genome-Wide Data via Kernel Machines

- Discovery: Identify loci that influence neuroimaging endophenotypes
- Characterization: Characterize neural expression of established genetic risk factors

Summary

- Psychiatric disorders are complex and highly polygenic
- A growing catalogue of risk variants but disorders are clinical constructs with fuzzy boundaries and mechanisms from gene⇒brain⇒illness are poorly understood
- Imaging genetics offers crucial tool for addressing this
 Two approaches:
- Discovery: need large samples
- Discovery. need large sa
 Characterization
- · Directions and Gaps:
 - Increasing Power: larger samples, consortia (e.g. PGC-ENIGMA)
 Methods for addressing high dimensionality

Acknowledgements **Psychiatric Genomics Consortium** 165 scientists from 68 institutions in 19 countries Mick O'Donovar BPD Pamela Sklar/John Kelsoe MDD Patrick Sullivan SNP-based genetic correlation analyses: S. Hong Lee, Naomi Wra Mark Daly/Bernie Devlin ASD ADHD Steve Faraone Brain Genomic Superstruct: Randy Buckner, Josh Roffman, Phil Lee, Avram Holmes, Marisa Hollingshead, Mert Sebancu,, others Analysis Mark Daly Jordan Smoller/Ken Kendler Cross-Di CNV Jonathan Sebat Thomas Lehner

